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Abstract-A method is presented by which correlations for the total band absorptance of vibration-rota- 
tion bands, applicable to isothermal gases, may be extended to predict the total band absorptance for 
nonisothermal gases. The method is analogous to the two-parameter Curtis-Godson approximation, 
and it consists of formulating the total band absorptance in terms of three parameters which describe an 
equivalent isothermal gas. These three parameters am chosen such that the nonisothermal band absorp- 
tance is correct in the linear, square-root and logarithmic limits. The formulation is shown to be in 

reasonable agreement with experimental data and other analytical predictions. 

NOMENCLATURE 

total band absorptance [cm- ‘I; 
band width parameter, J(T/a) for 
rigid rotor and harmonic oscillator 

[cm-‘]; 
dimensionless band absorptance ; 
rotational constant ; 
speed of light ; 
mean line spacing [cm- ‘1 ; 
Planck’s constant ; 
Boltzmann’s constant ; 
path length [cm] ; 
pressure [atm] ; 
total band intensity [atm-’ cmm2] ; 
line intensity [atm-’ cmm2] ; 
temperature [“K] ; 
maximum gas temperature ; 
minimum gas temperature ; 
dimensionless path length, SPL/A,, ; 
path length coordinate [cm] ; 
dimensionless coordinate; 
hc/4k Be ; 
line structure parameter, 4y/d ; 
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Y> mean line half width [cm- ‘I; 

4 T&‘-i ; 

;: 

spectral absorption coefficient [cm- ‘3 ; 
ao2/To ; 

43 WT 
0, wave number [cm-‘]. 

INTRODUCTlON 

THE PURPOSE of the present paper is to formulate 
a method of predicting the total band absorp- 
tance for vibration-rotation bands when the 
radiating gas is nonisothermal. Specifically, a 
method is presented by which the total band 
absorptance for nonisothermal gases may be 
formulated in terms of the corresponding band 
absorptance for an isothermal gas ; that is, the 
nonisothermal gas is recast as an equivalent 
isothermal gas. This approach is, in essence, a 
total band extension of the well-known Curtis- 
Godson method. 

The Curtis-Godson approximation (see for 
example Goody [l], pp. 236-243) consists of 
introducing equivalent path length and line 
structure parameters, such’that the band ab- 
sorptance for a nonhomogeneous gas may be 
formulated in terms of an equivalent homogen- 
eous gas. These two equivalent parameters are 
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obtained by comparing the nonhomogeneous 
and homogeneous band absorptance expres- 
sions in the weak-line and strong-line limits, 
with the Curtis-Godson approximation con- 
stituting an interpolation between these two 
exact results. When the nonhomogeneity is due 
solely to variable pressure, the Curtis-Godson 
approximation may be applied to a total 
vibration-rotation band. However, for non- 
isothermal gases the Curtis-Godson approxima- 
tion is directly applicable only to narrow 
spectral regions of a band, since the line intensity 
is assumed to be independent of wave number. 

Several investigators have applied the Curtis-- 
Godson approximation to a total band, with 
the most detailed treatment being that given by 
Weiner and Edwards [2]. This involved applica- 
tion of the Curtis-Godson approximation to 
each spectral interval of the band, and then 
numerically integrating over the entire band to 
obtain the total band absorptance. In this 
context, the results of [2] constitute an inter- 
polation between the exact strong-line and 
overlapped-line limits. 

Recently Chan and Tien [3] have also applied 
the Curtis-Godson approximation to each 
spectral interval of a band, but simplified the 
integration over the entire band by requiring 
that certain moments of the wave number 
integrals be satisfied rather than performing the 
wave number integrations directly. They also 
presented a second method which consisted of 
expanding the spectral absorption coefficient 
about the midpoint temperature of the gas. 

The total band absorptance for an isothermal 
gas is characterized by three parameters (as 
opposed to two parameters for a narrow spectral 
region), and the present investigation is con- 
cerned with formulating the nonisothermal band 
absorptance in terms of three analogous para- 
meters which describe an equivalent isothermal 
gas. These three equivalent parameters are 
chosen such that the nonisothermal band 
absorptance is correct in the linear, square-root 
and logarithmic limits. In effect, this constitutes 
a three-parameter total-band extension to the 

two-parameter narrow-band procedure ofcurtis 
and Godson. 

ANALYSIS 

Taking the wave number origin at the center 
of a given vibration-rotation band, the total 
band absorptance for a nonisothermal gas is 
expressed as 

A = _&[ I1 - exp [ - 1 K,(Y) dy]} do (1) 
0 

where L denotes the thickness of the gas layer. 
For present purposes it will be assumed that the 
individual rotational lines which comprise the 
vibration--rotation band are Lorentz lines, such 
that the spectral absorption coefficient for the 
,jth line is given by 

where oj denotes the center of line j. 
In actuality the line half width y depends 

upon the rotational quantum number j, and for 
a single line “jj N 1141: With reference to 
equation (2), however, it will be assumed that ?; 
represents an appropriate mean half width, 
averaged over both rotational and vibrational 
energy levels. Thus the temperature dependence 
of y will not necessarily be the same as that for 
a single line. 

It will further be assumed that the distribution 
of line intensities is given by the rigid-rotor 
harmonic-oscillator model, for which the varia- 
tion of line intensity with wave number is [4] 

S, = w4exp mm2 __-- c > -I 
J T T 

(3) 

where 

hc 

a = G%’ 

As will be discussed later, however, the final 
results are not necessarily dependent upon the 
use of equation (3). 

With reference to an isothermal gas, the band 
absorptance may be expressed as a function of 
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three parameters in the general form [5] 

A = A,@, fi) (4) 

where A(u, /?) is a dimensionless band absorp- 
tance, u is a dimensionless path length, 
u = SPL/A,, and 1 denotes the line structure 
parameter defined as /3 = 4y/d. The third para- 
meter, A,, is the band width parameter, and this 
is dependent upon the particular molecular 
model used. For the present case of a rigid rotor 
and harmonic oscillator, A,, is expressed as 

A, = ,/(T/u). 
Upon employing equations (2) and (3) in 

equation (l), Edwards and Menard [6] have 
shown that for an isothermal gas equation (4) 
possesses three limiting forms, and these are* : 

Linear, u < 1; 

A = A,u 

Square root, B < 1 and u % B; 

A = 2*Q3/4) A,&,!?) 

Logarithmic, u % 1 ; 

A = 2A,J(ln u). 

(5) 

(6) 

(7) 

Furthermore, in the Appendix it is shown that 
for a nonisothermal gas precisely the same limit- 
ing expressions are obtained for the band 
absorptance, providing A,, u, and /I are replaced 
by the equivalent parameters &, ii, and fl, 
which are defined by t 

,a, = A&Y,) (8) 
L 

9=$- S(T)dy 
s 0 
0 

(9) 

* The linear limit is completely general, whereas the 
expressions for the square-root and logarithmic limits, 
given by equation (6) and (7), apply only to the rigid-rotor 
harmonic-oscillator model. 

It is interesting to compare the present 
three-parameter approximation with the Curtis- 
Godson two-parameter approximation. The 
equivalent path length 1?, which is determined 
from the linear limit, is exactly that given by the 
Curtis-Godson approximation, since in the 
linear limit the spatial and wave number 
integrations may be interchanged, and corres- 
pondingly the restriction to a narrow band is 
not necessary. The equivalent line structure 
parameter a, as given by equation (lo), differs, 

t Equations (9) and (10) may readily IX extended to 
include nonuniform pressure as well as nonuniform tem- 

* Recently D. K. Edwards and S. J. Morizumi of UCLA 
independently derived equation (lo), but they were led to a 

perature. ditkent result for A”,. 

where To denotes the maximum temperature 
within the gas.* 

It is apparent that in the three limits the 
nonisothermal quantitiesJo, u” and flcorrespond 
to A,, u and j? for an equivalent isothermal gas. 
Correspondingly, in the same spirit as the 
Curtis-Godson approximation, it will be 
assumed that the isothermal band absorptance 
given by equation (4) may be extended to 
nonisothermal gases by writing equation (4) as 

A = a,@, /!$. (11) 

The motivation for this assumption is, of course, 
the fact that equation (11) is correct in each of 
the three limits. 

It is worth mentioning that equation (11) 
together with equations (8)-(10) are not re- 
stricted to the molecular model of a rigid rotor 
and harmonic oscillator. For example, if the 
variation of line intensity with wave number is 
taken to be that given by the exponential 
wide-band model of Edwards [6] 

sj = FeXp(-Zlwl/A,) 
0 

instead of equation (3), one still obtains equa- 
tions (@-o-(O) for the equivalent nonisothermal 
parameters. In other words, the use of equations 
(Q-o-(O) in extending an isothermal band ab- 
sorptance correlation to include nonisothermal 
gases is not necessarily restricted to the line 
intensity distribution of equation (3). 
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however, from that of the Curtis-Godson 
approximation through the inclusion of 
,/(T/T’,J in the integral of equation (10). This 
difference in the weighting function is due to the 
use of wave-number dependent line intensities 
in the present analysis (total band), while in the 
Curtis-Godson approximation the line intensi- 
ties are assumed to be independent of wave 
number (narrow band). In both cases, the 
equivalent line structure parameter is obtained 
from the square-root (strong-line) limit. 

The third equivalent parameter, A”,, does not 
have a counterpart in the two parameter 
Curtis-Godson approximation, since a narrow 
band model utilizes a fixed wave number 
interval in place of A, in equation (4). Unlike 
the other two equivalent parameters, A”, does 
not represent an averaged quantity. Instead, as 
shown by equation (S), P&, is simply the band- 
width parameter for an isothermal gas evaluated 
at the maximum temperature within the non- 
isothermal gas. This is physically quite accept- 
able. In the Appendix it is shown that A,, is 
obtained from the logarithmic limit. Further- 
more, this fimit corresponds to the physical 
situation in which the central portion of the 
band is saturated Since the width of a vibration- 
rotation band increases with temperature, this 
means that the band spectrum for colder regions 
of the gas will be confined to wave numbers for 
which complete absorption occurs in the highest 
temperature regions. The band wings for the 
region of highest temperature will, in turn, 
correspond to wave nears for which the 
colder gas is transparent. Correspondingly, in 
the logarithmic limit one would anticipate that 
the absorption of incident radiation, and thus 
the total band absorptance, should be governed 
by the region of highest temperature within the 
gas, and this is consistent with the present 
definition for the equivalent band width para- 
meter Al,. 

COMPARISON WITH I’XJMERKAL RESULTS 

In order to compare equation (11) with an 
exact numerical calculation, consider the limit 

of overlapped lines (fl % 1). In addition, atten- 
tion will be given to a fundamental band, for 
which 

(12) 

together with the family of temperature profiles 

gl E2 [l + ((p - ])y*]li* (13) 
1 

(13) where y* = y/L and 8 = ‘Z&Y&. Equation 
is illustrated graphically in Fig. 1 for B = 2. 

FIG. 1. Illustrative temperature. profilrts. 

Noting that for overlapped lines [4] 

K s. 
2 = 1 

P d 

and upon combining equations (l), (3) and (12), 
the nonisothermal band absorptance may be 
expressed as 

A = 2&(T,) [ {1 - exp t -%W(<, @I) dt (14) 

where 
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and 

u. = s(T,)PL, 
A,(%) 

f$ = ToflY 

With respect to the approximate equation (llf, 
the corresponding isothermal band absorptance 
yields 

A = i?A, r [l - exp(-u”6e-“)] d{ (16) 
0 

where, from equations (9) and (13) 

Equations (14) and (16) have been evaluated 
numerically for n = 4, land -l,andacom- 
parison between the exact result of equation (14) 
and the approximate formulation of equation 
(16) is illustrated in Fig. 2. The maximum 
discrepency occurs for intermediate values of 

over the entire band, as in the work-of Weiner 
and Edwards [2], the result is exact in the over- 
lapped-line limit. Thus, Fig. 2 is indicative of the 
additional error involved in using equation (11) 
as opposed to the spectral application of the 
Curtis-Godson approximation. On the other 
hand, the present method enjoys the advantage 
of not requiring detailed spectral information 
nor of requiring lengthy numerical integrations. 

COMPARISON WITH OTHER RESULTS 

Both experimental and analytical noniso- 
thermal band absorptance results are available 
for the 2.7 p band of H20. With reference to the 
present analysis, an appropriate band absorp- 
tance correlation for isothermal gases is that of 
Tien and Lowder [5J, such that from equation 
(11) one has for a nonisothermal gas 

0.20 f I I 
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I 
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PIG. 2. Comparison of exact and app~~~~ barxi absorp- 
tance results for overtapped fines. 

uo, which is as expected, since the approximate with 
band absorptance becomes exact for either 
uo+Ooruo+ co. f(fl) = 2.9411 - exp(-2.60&l. 

As previously mentioned, when the Curtis- Furthermore, for the 2.7 p H,O band, expres- 
Godson approxjma~on is applied to each sions for S(T), A,(T), and B(T) are given by 
spectral interval, with subsequent integration Edwards et al. [7l for a nonisothermal gas as 
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(18a) 

(18b) 

(184 

where P, is the equivalent broadening pressure 
[7]. It readily follows from equations (9) and (10) 
that 

u” _ pwo) L T, 
&I s -dy, 

T(Y) 
g = KG) 

0 

and, with & = A,( To), this completely describes 
equation (17) for application to a nonisothermal 
gas. 

The present analysis is compared in Table 1 
with the experimental results of Weiner and 

Table 1. Band absorptance comparisonsfor the 2.7 /I Hz0 band 

Run number 
Band absorptance (cm- ‘) 
12-10 9-13 12-1 

Weiner and Edwards [2] 
(experimental) 

Weiner and Edwards [2] 
(analytical) 

Chan and Tien [3] 
Present analysis 

599 451 372 

564 454 450 
545 456 440 
613 498 468 

Edwards [2] as well as other analytical predic- 
tions. In the experiments, the temperature 
increased in a nearly linear manner from one 
end of the cell to a maximum temperature, and 
then decreased, again in a nearly linear manner, 
toward the other end of the cell.* The ratio of 
maximum to minimum temperature ranged 
from 2.3 to 2.9. 

As previously discussed, the analytical results 
of Weiner and Edwards [2] were obtained by 
applying the Curtis-Godson approximation to 

____~____ 
* In evaluating ii, the triangle-like temperature profiles 

employed in [3] were used. 

each spectral interval and then integrating 
numerically over the entire band. In addition, 
separate treatment was given to each of the 
three bands which comprise the composite 
2.7 p H,O band. The results of Chan and Tien 
[3] utilized equations (17) and (18), and em- 
ployed equivalent spectroscopic parameters 
based upon satisfying moments of wave number 
integrals over the entire composite band. The 
primary difference between the results of Chan 
and Tien and the present analysis thus lies in 
the method of evaluating the equivalent para- 
meters. On the whole the present analysis, 
which has the advantage of relative simplicity, 
differs from the experimental results by a 
slightly greater amount than the other two 
analyses. 

An additional comparison may be made with 
the experimental results of Edwards et al [7] 
for the two fundamental bands of CO,. In this 
case the temperature varied monatonically from 
one end of the cell to the other, with the ratio of 
maximum to minimum temperature ranging 
from 3.4 to 3.7. For the CO, fundamental bands 
the line structure parameter varies with temp- 
erature as p - JT [7] instead of inversely 
with the square root of temperature as for H,O. 
It follows from equation (10) that 

The isothermal band absorptance correlation 
and spectroscopic parameters of Edwards et al. 

Table 2. Comparison of results for CO, 

Run number Band 

TlO 15u 253 242 
Tll 1Su 143 136 
T15 15u 43 48 
T6 4.3u 254 329 
T5 4.3u 189 241 
T16 4.3u 132 146 

Band absorptance (cm- ‘) 
Edwards et al. [7] Present analysis. 

(experimental) 
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[7] were employed in evaluating equation (II), 
and the comparison with experimental results 
is shown in Table 2. The average discrepency 
between experimental and analytical results is 
14.7 per cent and it is doubtful that the iso- 
therma band absorp~~ correlation is more 
accurate than this. 
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Linear limit 

APPEhDIX 

Limiting Soh4tions 

Expanding the exponential in equation (1), and noting 
that 

u 

S= J $dw 

there then follows that 

A = .&,iZ (A4 

where u’ is defined by equation (9), and equation (A.l) is of 
the same form as equation (5). This is identical with the 
Curtis-Godson weak-line limit. 

Logarithmic limit 
Since line structure plays no role in the togarithmic limit, 

the overlapped line modef may be employed to obtain this 

limit. Recalling that for overlapped lines [4] 

rc, s. -=’ 
P d 

then upon combining equations (1) and (3), and letting 

there is obtained 

A = 2Ao(To) 7 
D 

(1 - exp E - WC,& a ev ( - ?4(4 dzl 1 dt 64.2) 

where, by the mean-value theorem 

d CMz) exp E - T2d4z)l dz 

Al= 1 
! exp I-&#441 dzy 

From equation (A.21 it may easily be shown that large 2 
corresponds to large I, and by the method of steepest 
descent [8] there exist the asymptotic expansions 

1 

J e+ 
exp [-<2&z)] dz _ - -* TzrplzO)’ #‘@a) 9 0 (A.3) 

0 

1 

J exp [ - &‘#(z)] dz N 
c 1 &) ’ $; #‘(zo) = 0 (A.4) 

0 

where z. denotes the position of minimum &z); i e. d, = 1. 
It is clear that equation (A.3) applies when 4(z), and thus 
T(Z), is a monatonic function of z, whereas equation (A.4) 
is employed when #(I} has a minimum (maximum tempera- 
ture) at 2 = z,-,. In either case, equation (A.2) may be written 
as 

A = 2A,(T,) T{l - exp[-&$,c~-“e-e’jjd< (A.51 
0 

where c is evaluated from either equation (A.31 or equation 
fA.4), while n = 1 for the conditions of equation (A.3) and 
n = 0 with reference to equation (A.4). Following the 
procedure of Edwards and Menard [6], the limiting form of 
equation (A.5) for large fi is 

A = 2~~(~o~(ln~ = 2&&lZj (A.6) 

and it is thus unnecessary to evaluate either I$,,, or c. Equa- 
tion (A.6) coincides with the logarithmic limit for an iso- 
thermal gas given by equation (7). 

It should be emphasized that the evaluation of A, at the 
maximum tempera- 5 in equation (A.6) is not simpfy a 
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consequence of employing T, as a reference temperature m 
defining the dimensionless quantities appearing in equation 
(A.2). If some arbitrary temperature had instead been used, 
equation (A.6) would still result. 

Square-root limit 
Let A j denote the average absorptance of the jth line, such 

that 

Upon combining this with equation (2) and following the 
same procedure as outlined for an isothermal gas by Goody 
$11 p. 126). the square-root limit for a nonisothe~al gas is 
found to be 

Since the square root hmit implies nonoverlapping lines, 
then 

A=~AP__[Ajdw 
I 

and upon employing equations (3) and (A.@ 

Q L 

A=2 
scs 

p ,$ S(T) fi( Tj aw 

0 cl 

1 
t ev (- rot/T) dy dw. 

then from equation (A.10) 

IA.% 

(A.10) 

(A.1 1) 

Upon employing Schwarz’s inequality, it is found that a 
Lower limit to equation (A.12) exists which is independent of 
the tem~rature protile. and this is 

A > 2’~(3/‘4) &,/J(@). (A.13) 

The quantity on the right side of this equation IS exactly the 
isothermal square-root limit as given by equation (6). with 
the isothermal parameters replaced by the eqmvalent 
nonisothermal quantities ii, a, and fi 

It appears, however, that equation (A.13) constitutes 
more than just a lower bound on the nonisothermal band 
absorptance. For example, if one assumes that the noniso- 
thermal square-root limit can be described in terms of a 
reference temperature T,, then upon substituting #, = T,j7; 
into equation (A.12). the reference temperature vanishes 
when the integrations are performed, and there is obtained 

A = Z’r(3/4) &J(t$) = 2.06&,/(@) (A.141 

which is the same as the lower bound given by equation 
(A.13). 

In reality. the assumption of an appropriate reference 
temperature is not mathemat~~l~y exact. Never~eless, this 
suggests that equation (A.14) might we11 be a valid approx- 
imation to equation (A.12). To illustrate this, consider again 
the family of temperature profiles given by equation (13). 
and assume a hypothetical band for which* S(T)g(T) _ l/7: 
From equations (13) (A.lO) and (A.11) the band absorptance 
may be expressed as 

where 

A = N(n, ff) &&‘& (A.15) 

j: [SG(g. @)I+ d( (A.161 

with G(& 8) given by equation (I 51. Numerical values for 
H(n, @) are listed in Table 3, with H(n, 1) = 2.06 correspond- 
ing to an isothermal gas. It is seen that the band absorptance 

n 1 112 7 

-1 2.06 2.07 2.08 
1 2.06 2,06 2.09 
4 2.06 2-M 2.07 

_.-. ?zz-=-(_ 

as given by equation (A.15) is an extremely weak functton of 
the temperature profile, such that equation (A.14) should 
indeed be a valid approximation to equation (A.12). 

* Following the same reasoning as given by Ghan and 
Tien [3], such a hypotbeti~ band will, in the square-root 
limit, result in a greater dependency of A upon temperature 
than for a fundamental band with p -_ T) 
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UNE FORMULATION D’ABSORPTANCE DE BANDE POUR UN RAYONNEMENT 
GAZEUX ISOTHERME 

R&am&- On prksente une methode pour 1aqueJe les correlations pour I’ahsorptance totale de hande des 
bandes de vibration-rotation, applicablea aux gax isothermes, peut i%re ktendue pour p&dim I’ahsorptance 
totale de bande pour des gas non isothermes. La m&hode est analogue a I’approximation A deux para- 
m&es de Curtis-Godson, et con&e A form&r l’ahsorptance totale de bande en fonction de. trois para- 
m&es qui dkcrivent un gax isotherme @Galent Ces trek parametres sent choisis de telle faGon que 
l’absorptance nonisotherme de bande est correcte dansles limites lineahes, en racine carrke et logarithmique. 
On montre que la formulation est en accord raisonnabfe avec lea resuhats expkimentaux et d’autres 

previsions analytiques. 

EINE BANDABSORPTIONSFORMULIERUNG Fm ISOTHERME GASSTRAHLUNG 

Zusammenfassung-Es wird eine Methode angegeben fiir die Erweiterung von Korrelationen fti die 
Gesamtbandabsorption von Vibrations-Rotationsbanden von isothennen Gasen auf die Gesamtband- 
absorption nicht-isothermer Gase. Die Methode ist analog, der zwei-parametrigen Curtis-Godson 
NSiherung lund besteht darin, die Gesamtbandabsorption in Austicken von drei Parametern. die ein 
lquivalentes Gas beschreiben, zu formuiieren. Diese drei Parameter sind so gewiihlt, dass die nicht- 
isothenne Bandabsorption korrekt ist fiir lineare und logarithmische Grenzen, sow@ fiir die der Quadrat- 
wurzel. Die Formuiierung erweist sich in befriedigender &reinstimmung mit Versuchsergebnissen und 

anderen analytischen Behandhmgen. 

0 CIIEKTPE IIOrJIOIJJEHWl AJIll HEl430TEPMI4YECKOl’O 
rA30ROI’O I13JIY9EHLIH 

AHHOT~~H~-$J~B~~~TCF~ MeTog, cOrnacH0 K0T0pO~y 
nornoqeHWf KOJE6aTt?JIbHO-Bp3tI(3TenbHoro CueKTpa, 

KOpfE’JWKuU nOuHOr0 CueKTpa 
npai7iennMne ~na cnysaR naoTep- 

MAVeCKKX ra30B, MOrYT kiCnOJtb3OBaTbCII HJLJI $bEWieTa uOJlHOr0 CueKTpa uOrJt0meHHR 
HeH3OTepMB’WCKAX ra30B. MeTon aHanoraseH ~ByxnapatdeTpasecKolf annpoKcumaqaa 
KepTaca-PoncoHa li cOCTOBT B npe~cTaBneKuu o6mero cneKTpa nornomeHKK c uOMOmbt0 
Tpex napaMeTpon, omicbmam~5ix aKasiaaneHTHbI# a30TepMasecKat raa. 3Tki ~pu napaMeTpa 
Bbl6upatOTCFI TPK, ‘iTO6bt Heu3OTepMkiYeCKKt CueKTp IIOrJIOItK?HuFl MOr 06eCueYuTb TOYHOCTb 
B JtUHetiHbrX, ~Or3pu~MWWCKUX A KBaQaTHOrO HOPHIl npu6nKmeHuKx. ffOKa33H0, uT0 
~OpMJ’JIupOBK.3 ygOBJIeTBOpHTeJrbH0 COrJI3CJ’eTCfl C 3KCuefIAMeHTa~bHblMH HaHHbtMEl EI 


